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ABSTRACT

The problem of stably inverting a non-linear dimensionality
reduction map has applications in data visualization and ma-
chine learning, besides being of theoretical interest. In this
paper, we propose a meshfree interpolation method for ob-
taining such inverse maps using a non-negative linear combi-
nation of multiple interpolants. We show that the proposed
scheme can improve upon the approximation power of its in-
dividual constituent kernels, and discuss the conditions under
which its parameters can be uniquely estimated. We also pro-
vide an approach for estimating the intrinsic dimensionality
(ID) of manifolds using the proposed inverse map. Exper-
iments using multiple kernel interpolation for reconstruction
of novel test data and ID estimation show an improved or sim-
ilar performance compared to existing techniques.

Index Terms— manifold learning, inverse map, kernel
interpolation, intrinsic dimension estimation

1. INTRODUCTION

The high-dimensional data generated by many natural and ar-
tificial processes usually reside in a manifold of low intrinsic
dimensionality. A variety of non-linear dimensionality reduc-
tion (NLDR) methods have been proposed to infer the intrin-
sic structure [1, 2, 3]. Let us consider a bounded smooth man-
ifold M ⊂ RD of low intrinsic dimensionality, and assume
that we have a set of P samples {xj}Pj=1 fromM. Using an
appropriate non-linear mapping, we embed the data samples
in Rd using the map Φ : RD 7→ Rd to obtain {yj}Pj=1, where
d < D. We also define X ∈ RD×P and Y ∈ Rd×P as the
matrices containing the respective samples. Obtaining a sta-
ble estimate of the inverse map, Φ† : Rd 7→ RD, will allow
us to reconstruct the high-dimensional data samples.

A good inverse map should preserve the local neigh-
borhood information, reproduce the curvature of the man-
ifold, and provide a reasonable recovery for samples near
the boundary. A linear inverse map of the form Φ̂†(y) =
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∑
j:yj∈Ny

cjxj considered in [4], preserves the neighbor-
hood information only for points away from the boundary.
Inverse maps obtained using radial basis function (RBF) ker-
nels are more effective in reconstructing the curvature and
providing a good approximation near the boundary [5].

In this paper, we propose a method for reconstructing
high-dimensional samples in M using a non-negative linear
combination of multiple interpolation kernels. When com-
pared to the RBF-based approaches in [5, 6], we show that
the proposed multiple kernel approach can provide a good ap-
proximation for a larger set of functions. We also experimen-
tally demonstrate the superior recovery performance of the
proposed scheme in comparison to the RBF-based schemes.
Furthermore, we develop an approach to estimate the intrinsic
dimensionality (ID) of a manifold, by analyzing the quality
of interpolation for various embedding dimensions. ID esti-
mation is affected by the sampling of the manifold as well as
the presence of noise. Using synthetic and real datasets, we
show that our proposed scheme is robust to these issues, and
compares well with state-of-the-art approaches for intrinsic
dimension estimation [7, 8, 9].

2. INVERSE MAPPING USING INTERPOLATION

We provide an overview of RBF interpolation and its use
in computing the inverse map. An RBF interpolant of a
sample y is given by a linear combination of radially sym-
metric kernel functions, f(y) =

∑P
j=1 cj(y)k(y,yj) where

k(y,yj) = g(‖y − yj‖2) for some appropriate function
g(.), and cj(y) are the interpolation coefficients. Given
X ∈ RD×P and the corresponding embedding Y ∈ Rd×P

the strategy is to find a unique interpolation function for each
dimension in RD. Therefore, the interpolation coefficient
matrix C ∈ RP×D can be determined by solving KC = XT

where K ∈ RP×P is the kernel matrix whose (i, j) element
is k(yi,yj), the columns of X ∈ RD×P denote the samples
from M, and each column of C ∈ RP×D represents the
unique interpolation coefficients for that dimension. For a
novel sample y, the D−dimensional sample x̂ is estimated as
Φ†(y) = CT [k(y,y1) · · · k(y,yP )]T .

In order for the system KC = XT to be uniquely solv-



able, the kernel matrix K needs to be non-singular and this
is true for strictly positive definite (SPD) kernels. The Gaus-
sian RBF kernel k(yi,yj) = exp(−ε‖yi − yj‖2), where ε is
the scale parameter, is an example of an SPD kernel. Since it
is prone to numerical ill-conditioning at smaller scales when
the density of the data samples is low, the authors in [5] pro-
pose to use scale-free RBF kernels for computing the inverse
mapping. Examples of these are the cubic RBF defined as
k(yi,yj) = ‖yi − yj‖32, and the 2nd order thin plate splines
defined as k(yi,yj) = ‖yi−yj‖22 log ‖yi−yj‖2. The perfor-
mance of the cubic RBF near the boundary can be improved
by modifying the interpolant as

f(y) =

P∑
j=1

cj(y)k(y,yj) + yTα1 + α0

subj. to
P∑

j=1

cj = 0,

P∑
j=1

cjyj = 0, (1)

where α0 is a constant term and α1 ∈ Rd, and this new form
is known as the natural cubic interpolant. We will now state
the conditions under which the parameters can be uniquely
inferred for an important class of kernels [5, 6, 10].

Definition A real valued continuous even function k : Rd ×
Rd 7→ R is called conditionally positive definite (CPD) of
order m on Rd if

∑P
i=1

∑P
j=1 aiajk(yi,yj) ≥ 0, for the set

of P points in Rd subject to
∑P

j=1 ajρ(yi) = 0, where ρ(y)
is any real-valued polynomial of degree at most m − 1. If in
addition, the quadratic form is zero if and only if ai = 0,∀i,
then k is strictly conditionally positive definite (SCPD).

Theorem 2.1. [6] If the real valued continuous function
k : Rd × Rd 7→ R is SCPD of order m and the points
{y1, · · · ,yP } form an (m − 1)− unisolvent set, then the
following system is uniquely solvable:[

K P
PT 0

] [
c
α

]
=

[
f
0

]
. (2)

Here, P is the polynomial basis matrix with (j, n) element
given by ρn(yj) for j = {1, . . . , P} and n = {1, . . . ,M}.
{ρn(y)}Mn=1 forms the basis for the linear space of all poly-
nomials up to degree (m− 1), and f is a vector in RP .

Note that a set of points {yj}Pj=1 is m−unisolvent if the only
polynomial of total degree at most m, interpolating zero data
on the set is the zero polynomial. Note that both the cubic
RBF and the 2nd order thin plate spline are SCPD of order 2
with P = [1 Y]T and α = [α0 α

T
1 ]T .

3. PROPOSED MULTIPLE KERNEL
INTERPOLATION

Although the idea of using a single interpolation kernel is
mathematically sound, the class of functions that can be ap-

proximated using each kernel is limited. Therefore, we pro-
pose to use a non-negative linear combination of L different
kernels. The lth interpolant fl can be written using its respec-
tive kernel kl as fl(y) =

∑P
j=1 cj(y)kl(y,yj). It is clear

that fl lies in the linear span of {kl(.,yj)}Pj=1, and the coeffi-
cients of the linear combination are {cj}Pj=1. The native space
Nkl

of the kernel kl is defined as the completion of its span,
and clearly any kernel can only approximate functions in its
native space [10]. For a Gaussian RBF, the native space is
not very large, since it is restricted to functions whose Fourier
transform decays at least as fast as the Gaussian [6].

The proposed multiple kernel interpolant (MKI) is f(y) =∑K
l=1 βlfl(y) where βl ≥ 0, l = {1, . . . , L} are the kernel

weights. We will investigate the proposed MKI by addressing
these two questions: (a) can the multiple kernel interpolant
provide a better approximation of functions compared to its
constituents? and, (b) is it possible to learn the interpolant
coefficients uniquely from the data?

Lemma 3.1. Given L kernels {kl}Ll=1, the native space of
the ensemble kernel k =

∑
l βlkl is at least as big as its con-

stituent kernels, where the kernel weights βl ∈ R+,∀l.

Proof. Since any function that can be approximated by the
ensemble kernel at a point y can be written as

f(y) =

L∑
l=1

βl

P∑
j=1

cj(y)kl(y,yj), (3)

where we assume the kernels to be defined over the dis-
crete domain {yj}Pj=1. Clearly for each set of coefficients
{cj(y)}Pj=1, the final approximation lies in the convex cone
of the individual approximations. Hence the native space of
the ensemble kernel is the union of such cones, which is at
least as big as the individual native spaces of kernels. If the
native space of one kernel is not contained within that of the
other, the native space of the ensemble is bigger.

As an example, let us consider an ensemble of Gaussian
RBF and cubic RBF kernels. Since the native spaces of these
two kernels are different [10], using the ensemble kernel can
provide us with a better approximation of a function. How-
ever, we need to ensure that the coefficients for the ensemble
kernel can be uniquely learned using training data. We de-
fine the ensemble kernel matrix as K =

∑L
l=1 βlKl where

the (i, j)th entry of Kl is kl(yi,yj). We assume that each
kernel in the ensemble is strictly conditionally positive defi-
nite (SCPD) with a maximum order of m, or strictly positive
definite (SPD). When the function to be approximated lies in
the native space of the ensemble kernel, the following lemma
provides conditions under which the ensemble kernel coeffi-
cients can be uniquely obtained.

Lemma 3.2. If the kernels {Kl}Ll=1 are SCPD of order at
most m or SPD, and {yj}Pj=1 form aa (m − 1)-unisolvent



Fig. 1. The histogram of reconstruction errors (left), and the performance of the algorithms with increasing fill distance (right).

Table 1. Comparison of average interpolation errors obtained for the MNIST digit dataset using different kernels.
Digit 0 1 2 3 4 5 6 7 8 9

Gaussian RBF 0.61 0.45 0.73 0.78 0.73 0.75 0.69 0.70 0.75 0.71
Cubic RBF 0.62 0.41 0.70 0.71 0.67 0.69 0.63 0.63 0.71 0.64

Multiple Kernel 0.54 0.35 0.64 0.64 0.60 0.61 0.56 0.54 0.64 0.55

set, (∑L
l=1 βlKl P
PT 0

)(
c
α

)
=

(
f
0

)
(4)

has a unique solution if βl ≥ 0, l = {1, . . . , L}. Here, P
is the polynomial basis matrix with (j, n) element given
by ρn(yj) for j = {1, . . . , P} and n = {1, . . . ,M}.
{ρn(y)}Mn=1 forms the basis for the linear space of all poly-
nomials up to degree (m− 1), and f is a vector in RP .

Proof. In order to show that (4) is uniquely solvable, we must
show that 0 is the only element in the null space of the LHS
matrix in (4). Considering the first row block of the matrix,
we have

∑L
l=1 βlKlc + Pα = 0. Pre-multiplying by cT , we

have
∑L

l=1 βlc
TKlc + cTPα = 0. Since cTP = 0T from

the bottom block of (4), we have
∑L

l=1 βlc
TKlc = 0. This

is true if and only if c = 0, since each kernel is either SCPD
of order at most m, or SPD and a positive linear combination
is zero only if each of the elements are zero. If a particular
βl is zero, that kernel is not used in the approximation. Now,
since Pα = 0, the (m − 1) unisolvency condition enforces
that α = 0 and hence the solution to (4) is unique.

Algorithm: The ensemble kernel coefficients and the kernel
weights can be inferred from data by solving

{Ĉ, β̂, Â} = argmin
{C,β,A}

‖XT −
L∑

l=1

βlKlC−PA‖2F + λ1‖β‖1

+ λ2‖β‖22 subj. to PTC = 0, (5)

where β = [βl]
L
l=1 and the coefficient matrices are C =

[ci]
D
i=1 and A = [αi]

D
i=1. The squared error loss function

ensures a high fidelity interpolation. The elastic net penalty,
which is a combination of the `1 and `2 penalties regularizes
the problem by ensuring that important kernels will be chosen
for interpolation and similar kernels will be chosen together
as a group. Eqn. (5) is non-convex jointly and hence can
be solved as an alternating minimization. We fix β to com-
pute {C,A} by solving the linear system in (4), which has
a unique solution, and then estimate β using penalized least
squares, while fixing the other two parameters. The penalties
λ1 and λ2 are tuned using a cross validation procedure.

Performance Evaluation: To evaluate the proposed multi-
ple kernel interpolation approach, we consider a set of hand-
written digits from the MNIST database [11]. The dataset
consisted of 1000 randomly chosen samples from each digit
(0 − 9). Similar to the procedure in [5], the images were
resized to 14 × 14, reshaped into vectors, centered and nor-
malized to unit Euclidean norm. They were then projected
to a 10−dimensional space using Laplacian Eigenmaps, with
the number of neighbors fixed at 15. The inverse mapping
was evaluated for all samples in the set and compared to the
original to measure the interpolation error (`2 distance). We
used L = 10 kernels, (a) cubic, (b) thin plate spline, and (c)
8 Gaussians with ε ∈ {0.01, 0.05, 0.1, 0.5, 1, 10, 100, 1000}.
Figure 1(left) shows the histogram of the reconstruction errors
for Digit0 obtained using the cubic, best performing Gaussian
and the proposed MKI. The average errors for the different
digits are reported in Table 1. By combining the multiple ker-
nels, our method provides improved recovery when compared
to the individual kernels.

Convergence of RBF interpolants can be studied with
respect to the local fill distance, which provides an ap-



Fig. 2. Intrinsic dimension estimation - P (d, r) vs d for different datasets: Q12 embedded in 100D (left), Q12 corrupted by
additive Gaussian noise (middle), sciencenews data embedded in 200D (right).

Table 2. Comparison of the dimension estimation perfor-
mance on different synthetic and real datasets.

Dataset MLE kNN MSVD Proposed
Q6 5 6 6 6
Q12 9 12 12 12
Q48 25 32 48 48
S11 9 11 11 11
S23 16 18 23 24
S 2 2 2 2

Isomap faces 4.3 - 2 2
Science news 11 - 9 9
Face videos 6.6 - 2 3

proximate measurement of node spacing under random-
ized sampling schemes. The local fill distance is mea-
sured as the average distance to the nearest neighbor, hloc =
1
P

∑P
i=1 minj 6=i ‖xi − xj‖2. We used multiple random sub-

sets of Digit0, with number of samples varied between 100
and 1000. In each case we computed the local fill distance
and the average interpolation errors. Figure 1(right) illus-
trates the convergence of the different interpolation schemes
as a function of hloc, where improvements obtained with the
MKI scheme is evident.

4. INTRINSIC DIMENSION ESTIMATION

In the proposed MKI approach, the quality of inversion for
novel samples from Rd depends on the embedding dimension
(d). If d matches the intrinsic dimension of the manifold, we
can expect that the reconstruction to be accurate. We propose
to use the fidelity of the inverse mapping as an indicator for
estimating the intrinsic dimension.

The quality of the inverse map at a neighborhood can be
measured using the weighted mean of the reconstruction er-
rors for a sample and its neighbors. For any sample xi, we
consider the corresponding yi in the embedding as a novel
sample and obtain x̂i = Φ†(yi). The interpolation error for
xi is measured as Ei = ‖xi − x̂i‖2. For a neighborhood
of radius r centered at xi, the average interpolation error is

Ei =
∑

j∈{i,Ni} wjEj , where wj = exp(−ε‖xi − xj‖2).
The parameter ε is fixed as the inverse of the mean distance
between xk and its neighbors. We compute the interpolation
error for a random subset of samples (Ps) in the data, and
compute P (d, r) = 1

Ps

∑
iEi. We repeat this procedure for

increasing values of d and determine the intrinsic dimension
that provides the least interpolation error.

To evaluate the performance of the proposed approach in
intrinsic dimension estimation, we considered a set of syn-
thetic and real datasets: (a) k-dimensional cube, Qk, (b) k-
dimensional sphere, Sk, (c) manifold product of an S-shaped
curve and a unit interval, (d) Isomap faces [12], (e) science
news dataset [9], and (f) face videos [13]. The ambient di-
mensions and number of samples for (a), (b) and (c) were
fixed at D = 100 and P = 1000 respectively. In each case,
the radius r was chosen appropriately and the embeddings
were computed using LLE for (a)-(c), ISOMAP [3] for (d),
and Laplacian Eigenmaps for (e)-(f).

Table 2 shows the dimension estimates obtained for differ-
ent datasets with our method in comparison to three existing
techniques, maximum likelihood estimation (MLE) [7], kNN
based estimation [8], and multiscale SVD (MSVD) [9]. Fig-
ure 2 shows the average error P (d, r), at different values of
d, for Q12 with no noise and with additive Gaussian noise.
In cases where the MKI recovers the underlying map exactly,
the interpolation error drops arbitrarily close to zero for an
appropriate d (Figure 2). In the presence of noise, the sam-
ples lie outside the smooth manifold structure, and hence the
reconstruction error will be non-zero even when d equals the
ID. When the manifold is undersampled, the forward map to
create an embedding is not accurate since it depends on the
poorly sampled local neighborhood. Hence, the inverse map
cannot produce an exact reconstruction for any d. Another
interesting observation is that P (d, r) increases as d is varied
beyond the actual ID. A likely reason is that as d is increased,
the neighbors chosen by the interpolation scheme in Rd might
actually be far away (in geodesic distance) onM in the high
dimensional space. As a result, P (d, r) is distinctively low
only for a very few choices of d, and there is a clear mini-
mum unless there is a severe undersampling.
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